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The fracture stress and its 
dependence on slow crack growth 

A. G. EVANS* ,  H. J O H N S O N  
Inorganic Materials Division, Institute of Materials Science, National Bureau of Standards, 
Washington, D.C., USA 

An analysis is presented which enables the fracture strength, (under constant stress-rate 
conditions) to be predicted from fracture mechanics data obtained during slow crack 
growth - by identifying and evaluating several key parameters. The predicted strength 
characteristics are illustrated using fracture mechanics data obtained for a soda lime 
silicate glass. Finally, the predicted strengths are compared with strengths measured in 
flexure on abraded soda lime silicate glass specimens. A good correlation is obtained, 
indicating an equivalence between micro- and macro-crack propagation conditions for this 
material. 

1. Introduction 
When slow crack growth occurs, the extent of 
the slow crack growth affects the fracture stress. 
This problem was first examined by Charles [1 ], 
for constant stress-rate conditions, by assuming a 
single functional relation to describe the slow 
crack growth. More recently, Evans [2] has 
approached the problem from first principles, 
commencing with the fundamental fracture 
mechanics characterization of slow crack growth 
(which relates the crack growth rate, V, to the 
stress intensity factor, KI). A typical slow crack 
growth behaviour [3], illustrated in Fig. 1, 
exhibits four regions. A region of zero slow 
crack growth below K0; a variable velocity 
region, I, between K0 and Kib; a constant 
velocity (Vb) region, II; and another region of 
variable velocity, III, prior to the onset of rapid 
fracture at Kic. Each region can be characterized 
by the relation 

da 
V = d--'t = A K ~  (1) 

where a is the crack length and A and n are 
constant for each region; e.g. in region I, n is 
typically in the range 10 to 70 [4]; in region II, 
n is ~ 0 [3]; and in region III n is very large 
(~  50) [5, 6]. Starting with Equation 1 Evans [2] 
demonstrated that, for constant stress-rate 
conditions, the fracture stress should display the 
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Figure 1 A schematic of a typical three stage slow crack 
growth diagram. 

general features shown in Fig. 2: a region B that 
corresponds to region I of the Kx, V diagram and 
region B' and C that relate respectively to regions 
II and III. The same basic fracture stress 
characteristics were also demonstrated [2] to 
exist for the more generally used constant strain- 
rate conditions, except for situations where the 
initial crack size was a significant fraction of the 
specimen thickness. This situation is rarely 
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Figure 2 A schematic of the stress-rate dependence of the 
strength, predicted from the three stage crack growth 
behaviour depicted in Fig. 1. 

encountered in ceramic systems and hence, the 
constant stress-rate analysis of crack growth can 
generally be used to predict the fracture stress. 

Commencing with this basic knowledge, we 
intend in this paper to develop analyses which 
predict in detail the relations between fracture 
stress r and the stress rate 6- from KI, V dia- 
grams; and to present the results in a form that 
will permit the reader to develop err, 6" diagrams 
from KI, V diagrams f o r  any system, by per- 
forming a few very simple calculations.* 

The analysis is followed by a comprehensive 
empirical evaluation of the fracture stress, 
stress-rate relation for a soda lime glass under 
controlled environmental conditions. Finally, the 
measured crr, 6" diagram is compared with the 
diagram predicted from existing KI, V data [3]. 

2. Slow crack growth during loading - 

analysis 
2.1. The crack growth relation 
The extent of the slow crack growth that occurs 
in ceramic materials under any imposed loading 
condition can be determined from Equation 1, 
by combining with the fracture mechanics 
relation, KI = a Y~/a (where cr is the stress and Y 
is a geometric constant), and separating the vari- 
ables, to give 

da 
a~/~ - A Y~er~dt . (2) 

For  a constant stress rate, 6", the stress is given 
by 

O" - -  eri 
- # ( 3 )  

t - ti 

where ~i and ti are the stress and time at the 
initial condition. Differentiating Equation 3 and 
substituting in Equation 2 gives 

da A Y~a"d~ 
- ( 4 )  a hI2 

This may be integrated to give 

1 1 
ai(n-2)/2 a(n-2)/2 

_ (n  - 2 ) A  Y ~  (ern+a _ a i . + l )  ( 5 )  
(n + 1)25 

where ai is the initial crack length. This is the 
fundamental  relation used for the prediction of 
failure under constant stress-rate conditions. 

The failure condition can be derived from 
Equation 5 in several ways, but we find that an 
appreciation of the problem is most effectively 
achieved by establishing the relation between the 
stress and the stress intensity factor during the 
loading process. A convenient intermediary step 
in the development of the or, K~ diagram is the 
evaluation of the crack length, stress intensity 
factor relation, which is obtained in general 
form from Equation 5, by substituting for the 
stress (r = K/Y~/a),  to give 

aa/2 ai - - 7 - -  1 + ff--~-I 2Y6" 

Kii n+l at -3/2 - 1 = ~ ~ (6) 

2.2. T h e  crack propagation s t r e s s  
2.2.1. Region I 

For initial propagation, the initial stress 
intensity factor, Kn, is zero (assuming no slow 
crack growth limit) and region I slow crack 
growth determines the crack propagation con- 
dition; hence, from Equation 6, 

[ { a ] ( ~ ,  2)/2 1] a312 
L\~/ 

\nl + 1/2X-f K~1+1 (7) 

*The ~f, 6 predictions from K1, V diagrams are only expected to give a strict representation of the strength when the 
macro fracture mechanics behaviour simulates the slow crack growth at the small pre-existing flaws. 
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Figure 3 The effect of r at constant K~ on the stress ratio a/ao, due to region I slow crack growth. 

where the subscript 1 refers to region I behaviour. 
This equation can be solved for small or large 
crack extensions. 

(a) For small crack extensions, rewriting Equa- 
tion 7 as 

ai~/2[ 1 + A~a]a/2 [ ( - ~  a + a ~ j  1) ('~-2)/~ - 1] 

-- 2 Y(~ \ n  1 -Jr l / (8) 

where Aa = a - ai, we obtain 

(n~+2) \--~i] + (Aa) 

- Y(nt + 1)6-ai a/z = 0 (9) 

which can be solved to give 
Aa 2 
ai (nl + 2) 

( [1  (n'+2)A1KI'~+I] 1/2 

2 
----(nx+2) [(1 +q) )~ /z -  1]. (10) 

Substituting the stress for the crack length 
(a = KI2/Y2cr2) then gives the stress during initial 
propagation, and its dependence on KI; 

a = e0(n~ + 2)~/~[nl + 2(1 + ~0)~/~]-~/2 (11) 

where %(= KI Y~/ai) is the stress that would be 
attained at the equivalent K~ when no slow crack 
growth occurs. It is apparent from Equation 11 
that the crack propagation stress cr does not 
deviate very rapidly from ~0 during initial 
propagation, unless n is very small. This feature 
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is illustrated in Fig. 3 by taking the smallest 
known n value for ceramic materials, i.e. 10 (for 
silicon nitride [4]), and plotting a/a0 versus ~b. 
We have found it useful for plotting the a, K1 
diagram to define a stress, ~r*, as the stress where 

first deviates significantly from %, (say, 
a* = 0.99 %). This stress is obtained directly 
from Equation 11 and the definition of O-o, 
to give 

0.99 i Y~aP/~ (nl + 1 /  
a* = -~-d~ai ~ \nl  + 2] 

[0.16 + 0.04na + (0.02nl)2] } 1/(nl+l) 
0.96 (12) 

(b) For larger crack extensions, since nl is 
generally a large number, the quantity 
(a/aj)(n~-2)/2 very rapidly becomes much larger 
than unity; then Equation 7 reduces to 

a(%+1>/2= (n~ - 2~ A~ 
\nl + lJ ~ Y  Kx%+l ai(%-2)/2 (13) 

Substituting the stress for the crack length we 
obtain 

2#(nl + 1) 
~% +1 = A1 Y~J(nl - 2)ai (~1-~)/2 -= am~xn~+l" (14) 

Thus, the crack propagation stress must quickly 
assume a maximum, constant value, ~rmax [1, 2]. 
For the development of or, K~ diagrams we find 
that it is instructive to identify a condition where 
the stress essentially merges with the maximum 
stress asymptote given by Equation 14. Hence, we 
shall define a stress intensity factor, KI*, as the 
KI value when the stress reaches 0.99 ~m~. The 
magnitude of Kff is determined by first expres- 
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Figure 4 A schemat ic  of  the  var ia t ion o f  stress intensi ty 
factor with stress for region I slow crack growth,  defining 
the  parameters :  ao, e*, ~ KI* and  KI ' .  

sing Equation 7 in terms of stress and crack 
length (using KI = o- Y~/a) and then substituting 
for the specified stress (i.e. 0.99 O'max) from 
Equation 14, to find the crack length a* at K~*; 
this procedure yields 

a *  
- -  = [1 - -  0 . 9 9 n l + l ] - 2 / ( n 1 - 2 )  �9 (15)  
eli 

Substituting this value for a* in Equation 7 then 
gives the desired result; 

0.99amax Y~/ai 
KI* = [1 - 0 .99%+1] l / (n i  -2) (16) 

The principal features of the crack propaga- 
tion behaviour, expressed in terms of the o-, Kt 
diagram, can now be quite simply developed from 
the four parameters, o-0, O'max, o-* and K~*, 
identified in Fig. 4. It is convenient to start with 
the stress o-0(= K/Y~/ai) which emerges as a 
series of straight lines with a functional depen- 
dence on a~, as shown schematically in Fig. 5. 
Next, o-m~x can be determined from Equation 14 
for each ai, and a corresponding range of stress 
rates (Fig. 5). Finally, or* and /(i* may be 
obtained from Equations 12 and 16 and the 
complete curves drawn by connecting o-* to KI*. 
This latter procedure is facilitated by noting that 

[ ( " , -  ~I 
o-* = 0.99o-m~x [_\ni + 2/  

(0,6 + 004 .  + 768 

and that, 

KI* = 0.99 KI'[1 - 0.99%+~]-~/(% -z) (18) 

O-ma x 

STRESS fNTENSITY FACTOR 
Figure 5 A schemat ic  o f  the  effect o f  ai on  ~0 (indepen- 
dent  of  ~-) and  the  effect o f  s on  ~ma~ (at cons tan t  aO, for 
region I slow crack growth.  

where KI' is the KI value where % and o-max 
intersect (Fig. 4). For typical n values for ceramic 
systems ( ~  10) [4], we find that the ratios 
o-*/o-m~x and KI*/KI' do not differ substantially 
from unity; also note that both ratios are 
independent o f #  and ai. For soda lime glass, for 
example, n is 16 [3, 7] so that cr*/o-max is 0.88 and 
KI*/KI' is 1.13. Hence, the connection of o-* to 
KI* essentially requires only a modest rounding 
of the curve near the intersection of o-0 and o-max 
and this can usually be performed manually 
without additional calculation, as shown by the 
dotted line in Fig. 5. 

2.2.2. Region II 
In region II, crack growth occurs essentially at 
constant velocity (n = 0) and Equation 5 
becomes; 

Vb (o- ~b) (19) a -- ab = -:- 
G 

where the subscript b refers to the magnitude of 
the parameters at the onset of region II. Sub- 
stituting the stress intensity factor for the crack 
length (using, K1 = aYe/a) and rearranging 
gives; 

- = 0 .  ( 2 0 )  

This equation can be solved for (o-/~b) using the 
standard cubic solution; but this is a tedious 
task and instead of presenting the detailed 
solution we believe that it is more useful to 
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identify the important characteristics of the 
equation. 

The principal feature to note is that (cr/ab) only 
differs significantly from unity when the quantity 
(Ki2/ab 3) . (#/Y2Vb) is larger than ~ 0.01. An 
important calculation to perform, therefore, is 
the evaluation of the quantity, ~: = (Kip2/ab 3) . 
(~/Y2Vb), where Kit  is the stress intensity factor 
at the end of region II. Let us evaluate the 
magnitude of ~ when ~ is marginally larger than 
ab, say, 0.99a: then, to facilitate the fracture 
stress determination we can define a critical 
stress-rate, ae, as the stress-rate when region II 
crack propagation first generates a significant 
increase in the crack propagation stress. 
Inserting (rb/Cr = 0.99 in Equation 20 gives 

~: = 10-2[1 - (gxb/Kie)2] -~ (21) 

and hence, from the definition of ~ we obtain 

Y2 Vbab 3 
be = 10 -2 KiP2 _ Kib2" (22) 

Additionally, as noted in the analysis of region I 
behaviour, the crack propagation stress for 
KI < Kib very rapidly reaches the constant 
value, (amax)t, given by Equation 14. We can thus 
equate ab to (amaxh without introducing any 
significant inaccuracies; hence, 

5 e  - -  yaia/2 [KIp 2 _ Kxb2j 

[2 {nl-I-1~] a/(~-2). (23, 

\,-7-- 22j 
We are now in a position to formulate several 

important conclusions concerning the role of 
region II crack propagation. There is a critical 
stress-rate, # e given by Equation 23, below which 
the crack propagation stress in region II is 
essentially identical to that at the end of region I 
and determined exclusively by the region I 
crack propagation parameters. At stress-rates 
larger than #e a significant stress increase does 
occur in region II and its magnitude can be 
determined by solving Equation 20. Finally, it is 
noted that the critical stress-rate 6-e is not only a 
function of the regions I and II crack propaga- 
tion parameters, but also is strongly dependent 
on the initial flaw size a~: specifically, an increase 
i n  ai by, say 102, reduces 6-e, by 103. 

2.2.3. Region Ill 
For region III, the functional relation that 
describes the slow crack growth is similar to that 
for region I, although n is substantially larger 
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( >  50). The analysis is then similar to the region 
I analysis, with the additional feature that the 
initial stress intensity factor is larger than zero. 
We shall denote this initial stress intensity factor 
by K~r (i.e. the stress intensity factor at the end of 
region II), and insert this for Kn in Equation 6 to 
find the maximum crack propagation stress 
(using essentially the same procedure described 
for region I crack propagation). This procedure 
gives 

(amax)3 ---- o'p 1 + 2 ~ \ ' -~p3]J  

(rp [1 + 2~: (a~]a]l/'"~+a) \crp/ j (24) 

where the subscript 3 refers to region III 
behaviour and ae is the stress at the end of 
region II. Again, therefore, a significant stress 
increase in region III only occurs when ~: becomes 
a significant fraction of unity: since na is a large 
number, we find that typically ~: must exceed 
~ 0.2 to enable (Crmax)3 to significantly exceed 

(rp. Hence, we conclude that no stress increase 
occurs in region III until a stress-rate is attained 
somewhat larger than the stress-rate needed to 
achieve a region II stress increase; this feature is 
illustrated schematically in Fig. 7. 

When the stress-rate is sufficiently large, it is 
apparent from the trends depicted in Figs. 6 and 
7 that significant crack propagation in regions I 
and II can be suppressed, such that crp .~ %. In 
this stress-rate range the crack propagation can 
be treated in a manner equivalent to that des- 
cribed in region I; hence comparison with 
Equation 14 shows that the crack propagation 
stress rapidly assumes a constant maximum 
value, given by 

[2#KIp% 

n z +  l / ai(,_z)/z]l/('3 +1) 
.-77-- 2] (25) 

We shall now define a critical stress-rate, #s, as 
the stress-rate, above which Equation 25 
completely describes the crack propagation 
stress. This stress-rate is obtained by putting 
err ~ % (say, ap = 0.99%). Commencing with 
Equation 20 and rewriting it in terms of crack 
lengths, we obtain 

( aP~a/z+ (aPI1/2[VbKtb 1] 
KIpVb 

- 0 .  ( 2 6 )  6 Yai ~/2 
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Figure 6 A schemat ic  o f  the  effect o f  stress-rate on the  
crack p ropaga t ion  stress, due  to region II s low crack 
growth. 

Substituting ap/a~ = 1.02 (the crack length 
equivalent of ep = 0.99cr o) and solving for 6- 
then gives; 

Vb(KIt, - Krb) 
6-s = 10-'~ Yai 3/2 (27) 

Note that the crack length dependence of 6-s is 
identical to that for 6-e (Equation 23). Hence, the 
extent of the stress-rate range, 6-c to 6-s, where the 
crack propagation stress changes from com- 
pletely region I dominated behaviour (below 6-c) 
to completely region III dominated behaviour 
(above 6-s), is independent of the initial flaw size. 

(The specific stress-rate location of this range is, 
of course, strongly dependent on ai.) 

2.3. The fracture s t ress  
The fracture stress for constant stress-rate 
conditions is determined by the stress when the 
crack emerges from the specimen [2]. For small 
initial crack sizes (compared to the specimen 
thickness), KI will be well into region III before 
the crack emerges from the specimen, at least 
for the stress-rates of practical interest. Hence, 
we may generally equate the maximum region III 
stress, (~max)3, to the fracture stress, cf. The 
fracture stress may thus be obtained in terms of 
the initial crack length and the stress-rate by 
combining Equations 21, 20 and 7. This pro- 
cedure does not yield a simple analytical relation 
and it is more convenient to obtain a solution 
using the stepwise procedure described in the 
preceding section (considering each stage 
separately). This is illustrated by examining a 
specific example: soda lime glass in a 1 ~ RH 
environment and an initial flaw size 10 -5 m. The 
KI, V data obtained by Wiederhorn [3] (Fig. 8) 
are used to compute the ~, KI diagrams. 

Initially, it is useful to evaluate the critical 
stress-rates 6-e and 6-s. From Equation 23, 5-o is 
4 • 10 -1 MN m -2 sec -1 and, from Equation 27, 
6-s is 103 MN m -2 sec --a. Next, to obtain the 
fracture stress at stress-rates below 6-0 we can 
simply equate cf to (Cmax)l, giving ~foc6-~/("1 +1) 

I I 

I r 
/ �9 

/ /  ' , 

STRESS INTENSITY FACTOR 

Figure 7 A schemat ic  o f  the  effect o f  stress-rate on the  crack p ropaga t ion  stress, due to region III slow crack 
growth.  

219 



A. G.  E V A N S ,  H .  J O H N S O N  

10-4 

t 

10"5 

C 

0 i0. 6 
Ld > 

< 

i0-7 

4.0 5.0 6.0 7.0 8.0 
STRESS INTENSITY FACTOR,KI,N r~3"ZX I05 

Figure 8 Slow crack growth data for soda lime glass as a 
function of the relative humidity (after [3]). 
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Figure 9 The relation between the stress intensity factor 
and the crack propagation stress for soda lime silicate 
glass specimens containing 10 .5 m deep pre-existing 
flaws, tested in a 1 ~ relative humidity environment: the 
number opposite each curve give the stress-rate in MN 
m - 2  SCC-1. 

(as shown in Fig. 10 and denoted region B); and 
the fracture stress above #s is easily obtained by 
equating af to (O'max)a , giving: afocd-1/(% +1) 
(denoted region C in Fig. 10). 

The fracture stress between ~e and d-s is more 
difficult to evaluate and must be obtained by 
working through the details of the crack propa- 
gation behaviours in each region, using the 
parameters a* and KI*, as shown in Fig. 9. The 
resultant fracture stresses obtained are plotted in 
Fig. 10 (denoted region B'). It is interesting to 
note that these strengths are not very different 
from the strengths obtained if only regions I and 
III behaviours were considered (Fig. 10). 

3. E m p i r i c a l  s t r e n g t h  m e a s u r e m e n t s  
The empirical strength study was motivated by 
the need for extensive strength, stress-rate data 
on a system With a well-characterized three 
stage slow crack growth behaviour (to achieve 
an effective comparison of predicted and 
measured strengths). The system selected was 
soda lime glass in a 1 ~ relative humidity 
environment, largely because good comparative 
fracture mechanics data were available [3], and 
also because reasonable flaw size consistency 
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could be achieved using a standardized surface 
preparation procedure. 

The strength tests were performed in four 
point flexure using specimens with an abraded 
surface. The test fixture was enclosed in a 
chamber and continuous streams of mixed dry 
and moist nitrogen gases were passed through the 
chamber during the tests to maintain the 
specimen environment at 1 ~ relative humidity. 

The analysis presented in the preceding 
section generated relations between stress-rate 
and fracture strength, that depend on the size of 
the pre-existing flaws, ai. In order to compare 
measured and predicted strengths, therefore, we 
need either to determine ai independently, or 
preferably, to ensure that comparisons are made 
at constant at. This latter approach can be 
effected, in principle, by performing a large 
number of strength measurements and using a 
proper sampling procedure to ensure a consistent 
flaw size distribution for each stress-rate con- 
dition. Consequently, fifty samples were allo- 
cated for each stress-rate condition; all samples 
(a total of 700 for 14 selected stress-rates) were 
prepared together from a single batch; then a 
random sampling approach was used to separate 
the specimens into groups of fifty. 
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Figure 10 The predicted stress-rate dependence of the fracture strength of a soda lime silicate glass containing 
a 10 5 m deep initial flaw, tested in a 1 ~o relative humidity environment. 
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Figure 11 Flexural strength data obtained on a function of 
the stress-rate for abraded soda lime silicate glass: the 
solid lines are the strengths predicted from the fracture 
mechanics data. 

A comparison of strengths at constant a1 can 
then be effected by plotting the median strengths 
(if the strength distributions are reasonably 
compatible) [8]. The results obtained are shown 
in Fig. 1 I. The general features described in the 
preceding section (and illustrated in Fig. 10) 
are evident, i.e. the three regions of  behaviour, 

B, B' and C are apparent. A more quantitative 
comparison can be made by first calculating an 
apparent value for a~ from the strength in region 
C* (because, in this region, K1 ~ KIc, the critical 
stress intensity factor); this gives a1 = 2 x 10 -5 
m. Inserting this value for a~ in the equations 
developed in the previous section enables the 
strength, stress-rate curve to be predicted from 
the fracture mechanics data (Fig. 8). The pre- 
dicted strengths are plotted as the solid line in 
Fig. 11. A good correlation is apparent, showing 
that the slow crack growth parameters, nl,.A1, 
Vb, n3 and A 3 are essentially the same for the 
small flaws that control the strength behaviour 
and the macro-cracks used for fracture mechanics 
measurements. 

A further critical comparison involves the 
"examination of stress-rate effects at both a larger 
probability (smaller ai) and at a smaller prob- 
ability (larger ai), because changes in ai lead 
to distinctive trends in the predicted strength 
behaviour. Let us consider the probabilities; 0.9 
and 0.1: the corresponding strength, stress-rate 
data are shown in Fig. 11. A distinct translation 
of region B' toward higher stress-rates is 
apparent as the flaw size, as, is diminished. This is 
qualitatively consistent with the analytical 
predictions (Section 2.2.2). The complete strength 
predictions, evaluated in the manner described 
above, are shown as the full lines in Fig. 11. The 

*No direct methods  for evaluat ing ai  (for glass) have yet  been devised. 
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good correlation with the measured strengths 
lends additional credence to the conclusion, 
noted above, that the micro and macro crack 
propagation parameters, for this material, are 
essentially equivalent. 

4. Conclusions 
An analysis has been presented which enables the 
strength, stress-rate relations for any system to be 
predicted, very simply, from the slow crack 
growth parameter, by identifying and evaluating 
several key quantities. 

Slow crack growth data for soda lime silicate 
glass was used to illustrate the expected strength 
trends for a system that exhibits typical three 
stage slow crack growth behaviour. Three 
strength regimes were identified, but these were 
not as distinct as the regions of  slow crack 
growth. 

Finally, strength data obtained on soda lime 
silicate glass flexural specimens in a 1% R H  
environment were compared with the strength 

predicted from the fracture mechanics data. A 
good correlation was apparent suggesting that 
the conditions for the propagation of small 
pre-existing cracks and large macro-cracks are 
essentially the same for this material in a 1% R H  
environment. 
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